Decentralised control of active distribution grids using optimisation and machine learning techniques

Petros Aristidou

School of Electronic and Electrical Engineering
University of Leeds, UK

(joint work with Stavros Karagiannopoulos and Gabriela Hug, ETH Zurich)
Motivation
Transformation of power systems

New developments in distribution grids

- Introduction of large distributed generators (renewable energy sources, etc.)
- Introduction of small distributed generators and energy storage systems
- Electrication of transportation (plug-in hybrid, battery electric, etc.)
- Demand response schemes (reaction to price signals, emergency load reduction, peak shaving, etc.)
Transformation of power systems

New developments in distribution grids

- Introduction of large distributed generators (renewable energy sources, etc.)
- Introduction of small distributed generators and energy storage systems
- Electrication of transportation (plug-in hybrid, battery electric, etc.)
- Demand response schemes (reaction to price signals, emergency load reduction, peak shaving, etc.)
Transformation of power systems

New developments in distribution grids

• Introduction of large distributed generators (renewable energy sources, etc.)
• Introduction of small distributed generators and energy storage systems
• Electrification of transportation (plug-in hybrid, battery electric, etc.)
Transformation of power systems

New developments in distribution grids

- Introduction of large distributed generators (renewable energy sources, etc.)
- Introduction of small distributed generators and energy storage systems
- Electrification of transportation (plug-in hybrid, battery electric, etc.)
- Demand response schemes (reaction to price signals, emergency load reduction, peak shaving, etc.)
New challenges

- Operation of the distribution grids close or above the physical limits and hosting capacity. Distribution grids were not designed to host generation.
New challenges

- **Operation of the distribution grids close or above the physical limits and hosting capacity.** Distribution grids were not designed to host generation.
- **Bi-directional flows.** Most of system protections and operation practices were not designed for this.
New challenges

- **Operation of the distribution grids close or above the physical limits and hosting capacity.** Distribution grids were not designed to host generation.
- **Bi-directional flows.** Most of system protections and operation practices were not designed for this.
- **Increased uncertainty.** Intermittent generation, new consumption profiles and patterns, unknown consumer response.
New challenges

• **Operation of the distribution grids close or above the physical limits and hosting capacity.** Distribution grids were not designed to host generation.

• **Bi-directional flows.** Most of system protections and operation practices were not designed for this.

• **Increased uncertainty.** Intermittent generation, new consumption profiles and patterns, unknown consumer response.

• **Decommission of conventional units.** Loss of traditional "dispatchable" generation and control.
Real-time operation

Distribution grid control approaches

- **Local**
 - Only local measurements and decisions
 - No communication
 - Lower cost and more robust
 - "One size fits all"

- **Distributed**
 - Local measurements and decisions
 - Some communication still needed

- **Centralised**
 - Full monitoring and communication
 - Centralised decision
 - Better performance but higher cost
 - More security risks

Analytical & Machine learning

- Optimal set-point data
- Optimised local control schemes
Real-time operation

Distribution grid control approaches

Local
Only local measurements and decisions
No communication
Lower cost and more robust
"One size fits all"

Distributed
Local measurements and decisions
Some communication still needed

Centralised
Full monitoring and communication
Centralised decision
Better performance but higher cost
More security risks

Analytical & Machine learning
Optimal set-point data
Optimised local control schemes
Real-time operation

Distribution grid control approaches

Local
Only local measurements and decisions
No communication
Lower cost and more robust
"One size fits all"

Distributed
Local measurements and decisions
Some communication still needed

Centralised
Full monitoring and communication
Centralised decision
Better performance but higher cost
More security risks

Analytical & Machine learning
Optimal set-point data
Optimised local control schemes
Real-time operation

Distribution grid control approaches

Local
- Only local measurements and decisions
- No communication
- Lower cost and more robust
- "One size fits all"

Distributed
- Local measurements and decisions
- Some communication still needed

Centralised
- Full monitoring and communication
- Centralised decision
- Better performance but higher cost
- More security risks

Analytical & Machine learning
- Optimal set-point data
- Optimised local control schemes
Real-time operation

Distribution grid control approaches

Local
- Only local measurements and decisions
- No communication
- Lower cost and more robust
 "One size fits all"

Distributed
- Local measurements and decisions
- Some communication still needed

Centralised
- Full monitoring and communication
- Centralised decision
- Better performance but higher cost
- More security risks

Analytical & Machine learning
- Optimal set-point data
- Optimised local control schemes
Real-time operation

Distribution grid control approaches

Local
- Only local measurements and decisions
- No communication
- Lower cost and more robust
 "One size fits all"

Distributed
- Local measurements and decisions
- Some communication still needed

Centralised
- Full monitoring and communication
- Centralised decision
- Better performance but higher cost
 More security risks

Optimal set-point data
Real-time operation

Distribution grid control approaches

Local
Only local measurements and decisions
No communication
Lower cost and more robust
"One size fits all"

Distributed
Local measurements and decisions
Some communication still needed

Centralised
Full monitoring and communication
Centralised decision
Better performance but higher cost
More security risks

Optimal set-point data

Analytical & Machine learning
Real-time operation

Distribution grid control approaches

Local
- Only local measurements and decisions
- No communication
- Lower cost and more robust
 - "One size fits all"

Distributed
- Local measurements and decisions
- Some communication still needed

Centralised
- Full monitoring and communication
- Centralised decision
- Better performance but higher cost
 - More security risks

Optimised local control schemes

Optimal set-point data

Analytical & Machine learning
Optimised local control
Methodology overview

Operational planning problem with OPF-based centralised control

Stage I
Methodology overview

Operational planning problem with OPF-based centralised control

Optimal DER set-point data

Stage I

Stage II

Stage III
Methodology overview

Operational planning problem with OPF-based centralised control → Optimal DER set-point data → Data pre-processing → Derivation of optimised local control schemes → Clustering

Stage II
Methodology overview

Operational planning problem with OPF-based centralised control

Optimal DER set-point data

Data pre-processing

Derivation of optimised local control schemes

Clustering

Validation

Stage III
Operational planning problem with centralised control

Multi-period OPF problem formulation

$$\min_u \sum_t (c_{op}^T u + c_{el}^T \text{losses}) \Delta t$$

u:

- Active power curtailment (APC)
- Reactive power control (RPC)
- Battery Energy Storage Systems (BESS)
- Controllable loads (CLs)
Operational planning problem with centralised control

Multi-period OPF problem formulation

$$\min_{u} \sum_{t} (c_{op}^T u + c_{el}^T losses) \Delta t$$

Subject to:

- AC power-flow constraints
- Voltage limits
- Thermal loading limits
- DER limits
- Balancing constraints
- Controllable load constraints
- BESS dynamics

\(u:\)

- Active power curtailment (APC)
- Reactive power control (RPC)
- Battery Energy Storage Systems (BESS)
- Controllable loads (CLs)
Operational planning problem with centralised control

Multi-period OPF problem formulation

$$\min_{u} \sum_{t} (c_{op}^{T}u + c_{el}^{T}losses) \Delta t$$

Subject to:

- **AC power-flow constraints**
- Voltage limits
- Thermal loading limits
- DER limits
- Balancing constraints
- Controllable load constraints
- BESS dynamics

\(u:\)

- Active power curtailment (APC)
- Reactive power control (RPC)
- Battery Energy Storage Systems (BESS)
- Controllable loads (CLs)
AC power-flow constraints

- Non-convex and non-linear
Operational planning problem with centralised control

AC power-flow constraints

- Non-convex and non-linear
 - Backward/Forward Sweep (BFS) power flow (Fortenbacher et al. 2016)
 ▶ Iterative procedure
 ▶ Exploit the radial grid structure
 ▶ Weakly meshed treatment
Operational planning problem with centralised control

AC power-flow constraints

- Non-convex and non-linear
 - Backward/Forward Sweep (BFS) power flow (Fortenbacher et al. 2016)
 - Iterative procedure
 - Exploit the radial grid structure
 - Weakly meshed treatment

- Use a single BFS iteration for the OPF problem
Operational planning problem with centralised control

Initialize:
\[k = 0, \ V_{\text{bus}}^0 = 1.0 \angle 0^\circ \]
\[m = 1, \ \Omega_{m-1} = \Omega_{m-1}^0 = 0 \]

Run multi-period OPF with one BFS iteration

Run complete power flow solution

\[\max(|V_{\text{bus}}| - |V_{PF_{\text{bus}}}|) \leq \tilde{\eta} \]

Evaluate \(\Omega_m V_i \), \(\Omega_m I_{br} \) and check tightenings

\[\max(|\Omega_m V_i| - |\Omega_{m-1} V_i|) \leq \eta \Omega \]
\[\max(|\Omega_m I_{br}| - |\Omega_{m-1} I_{br}|) \leq \eta \Omega \]

Stop

Yes

No

Multi-period BFS-OPF

Operational planning problem with centralised control

Tackling Uncertainty

• Branch current flows and voltages are functions of the power injections and are hence influenced by renewable generator & load power uncertainty
Tackling Uncertainty

- Branch current flows and voltages are functions of the power injections and are hence influenced by renewable generator & load power uncertainty

Formulation of Chance Constraints

\[
\mathbb{P}\{|V_{bus,j,t}| \leq V_{\text{max}}\} \geq 1 - \varepsilon \\
\mathbb{P}\{|V_{bus,j,t}| \geq V_{\text{min}}\} \geq 1 - \varepsilon \\
\mathbb{P}\{|I_{br,i,t}| \leq I_{\text{i,max}}\} \geq 1 - \varepsilon
\]
Operational planning problem with centralised control

Tackling Uncertainty

- Branch current flows and voltages are functions of the power injections and are hence influenced by **renewable generator & load power uncertainty**

Formulation of Chance Constraints

\[
\mathbb{P}\left\{ \left| V_{bus,j,t} \right| \leq V_{\text{max}} \right\} \geq 1 - \varepsilon
\]

\[
\mathbb{P}\left\{ \left| V_{bus,j,t} \right| \geq V_{\text{min}} \right\} \geq 1 - \varepsilon
\]

\[
\mathbb{P}\left\{ \left| I_{br,i,t} \right| \leq I_{i,max} \right\} \geq 1 - \varepsilon
\]

Reformulate into deterministic constraints through “tightenings”

\[
V_{\text{min}} + \Omega_{V,j,t}^{\text{lower}} \leq \left| V_{bus,j,t} \right| \leq V_{\text{max}} - \Omega_{V,j,t}^{\text{upper}}
\]

\[
\left| I_{br,i,t} \right| \leq I_{i,max} - \Omega_{br,i}^{k}\]

Operational planning problem with centralised control

Tackling Uncertainty

- Branch current flows and voltages are functions of the power injections and are hence influenced by **renewable generator & load power uncertainty**

Formulation of Chance Constraints

\[
\begin{align*}
\mathbb{P}\{|V_{bus,j,t}| \leq V_{\text{max}}\} & \geq 1 - \varepsilon \\
\mathbb{P}\{|V_{bus,j,t}| \geq V_{\text{min}}\} & \geq 1 - \varepsilon \\
\mathbb{P}\{|I_{br,i,t}| \leq I_{i,\text{max}}\} & \geq 1 - \varepsilon \\
\end{align*}
\]

Reformulate into deterministic constraints through “tightenings”

\[
\begin{align*}
V_{\text{min}} + \Omega_{V_{j,t}}^{\text{lower}} & \leq |V_{bus,j,t}| \leq V_{\text{max}} - \Omega_{V_{j,t}}^{\text{upper}} \\
|I_{br,i,t}| & \leq I_{i,\text{max}} - \Omega_{I_{br,i}} \\
\end{align*}
\]
Operational planning problem with centralised control

Uncertainty margins evaluation

• Analytical approach → Need to know the probability distribution
Operational planning problem with centralised control

Uncertainty margins evaluation

- Analytical approach → Need to know the probability distribution

- Monte Carlo simulation using historical data from forecast errors
 - No assumptions about the uncertainty distribution

- Quantile ε calculation

Operational planning problem with centralised control

Initialize:
\[k = 0, \ V_{bus}^0 = 1 \angle 0^\circ \]
\[m = 1, \ \Omega_{m-1} = \Omega_{m}^0 = 0 \]

Run multi-period OPF with one BFS iteration

Run complete power flow solution

\[\max(|V_{bus}^k| - |V_{PF}^k|) \leq \tilde{\eta} \]

Evaluate \(\Omega_m V_i \), \(\Omega_m I_{br} \) and check tightenings

\[\max(|\Omega_m V_i - \Omega_{m-1} V_i|) \leq \eta \Omega V \]
\[\max(|\Omega_m I_{br} - \Omega_{m-1} I_{br}|) \leq \eta \Omega I \]

Stop

Yes

No

Multi-period BFS-OPF
Operational planning problem with centralised control

Initialization:
- \(k = 0, \ V_{bus}^k = 1 \angle 0^\circ \)
- \(m = 1, \ \Omega_{m-1}^{m-1} = \Omega_{m-1}^{m-2} = 0 \)

Run multi-period OPF with one BFS iteration

Run complete power flow solution

\[
\max |(|V_{bus}^k| - |V_{bus}^{PF}|)| \leq \tilde{\eta}
\]

Evaluate \(\Omega_m^{m}, \Omega_m^{m-1}, \Omega_m^{m-1} \) and check tightenings

\[
\max |\Omega_{m}^m - \Omega_{m-1}^{m-1}| \leq \eta^\Omega
\]
\[
\max |\Omega_{m-1}^{m-1} - \Omega_{m-2}^{m-2}| \leq \eta^\Omega
\]

Stop

Multi-period BFS-OPF

Uncertainty tightenings

Case Study
Introduction
POSITIVE SEQUENCE only

Control actions
- Active Power Curtailment (APC)
- Reactive Power Control (RPC)
- Battery Energy Storage System (BESS)
- Controllable load (CL)

Network description
- Based on European CIGRE LV grid
- Normalized profiles
 - PV & forecasts: Real data from Zurich
 - Load: Typical profiles based on CIGRE
- Summer day simulations
 - High solar radiation
- Acceptable limits:
 - Voltage: $\pm 4\%$ p.u.
 - Current: up to 1 p.u.
Some results

![Graph showing voltage (p.u.) over time (h)]

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Voltage (p.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>1.05</td>
</tr>
<tr>
<td>72</td>
<td>1.1</td>
</tr>
<tr>
<td>96</td>
<td>1.1</td>
</tr>
<tr>
<td>120</td>
<td>1.05</td>
</tr>
<tr>
<td>144</td>
<td>1</td>
</tr>
<tr>
<td>168</td>
<td>1.05</td>
</tr>
<tr>
<td>192</td>
<td>1.1</td>
</tr>
<tr>
<td>216</td>
<td>1.1</td>
</tr>
<tr>
<td>240</td>
<td>1</td>
</tr>
</tbody>
</table>

- Orig.
- \(V_{max} \)
Some results

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Voltage (p.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orig.</td>
<td>VDE</td>
</tr>
<tr>
<td>OPF</td>
<td>OLC</td>
</tr>
<tr>
<td>V_{max}</td>
<td></td>
</tr>
</tbody>
</table>

The graph shows the voltage (p.u.) over time, with red representing Orig., green representing OPF, and a dotted line indicating V_{max}. The voltage fluctuates periodically, with peaks and troughs at specific time intervals.
Methodology overview

Operational planning problem with OPF-based centralised control

Optimal DER set-point data

Data pre-processing

Derivation of optimised local control schemes

Clustering

Validation

Stage I
Methodology overview

Operational planning problem with OPF-based centralised control

Optimal DER set-point data

Data pre-processing

Derivation of optimised local control schemes

Clustering

Validation

Stage II
Local control schemes

Existing local control schemes

- Usually all DERs of same type and similar size have the same curve.
Local control schemes

Existing local control schemes

• Usually all DERs of same type and similar size have the same curve
• Several types, usually: $Q = f(V)$, $\cos \phi = f(P)$, $P_{curt} = f(V)$
Local control schemes

Existing local control schemes
- Usually all DERs of same type and similar size have the same curve
- Several types, usually: $Q = f(V)$, $\cos \phi = f(P)$, $P_{curt} = f(V)$

Optimised local control schemes
- Customised local control scheme for each unit based on data from the previous stage
Local control schemes

Existing local control schemes

- Usually all DERs of same type and similar size have the same curve
- Several types, usually: $Q = f(V)$, $\cos \phi = f(P)$, $P_{curt} = f(V)$

Optimised local control schemes

- Customised local control scheme for each unit based on data from the previous stage
- Use predictive modeling techniques to derive controllers from data
 - Piece-wise (segmented) linear fitting
 - Support Vector Regression (SVR)
Local control schemes

Existing local control schemes

- Usually all DERs of same type and similar size have the same curve
- Several types, usually: $Q = f(V)$, $\cos \phi = f(P)$, $P_{curt} = f(V)$

Optimised local control schemes

- Customised local control scheme for each unit based on data from the previous stage
- Use predictive modeling techniques to derive controllers from data
 - Piece-wise (segmented) linear fitting
 - Support Vector Regression (SVR)
Optimised local control schemes

Piece-wise (segmented) linear fitting

- Simple and efficient (R, sklearn, MATLAB, etc.)
- Challenges
 - Breakpoint selection
 - Impose monotonicity and slope constraints
Optimised local control schemes

Piece-wise (segmented) linear fitting

- Simple and efficient (R, sklearn, MATLAB, etc.)
- Challenges
 - Breakpoint selection
 - Impose monotonicity and slope constraints
Optimised local control schemes

Piece-wise (segmented) linear fitting

- Simple and efficient (R, sklearn, MATLAB, etc.)
- Challenges
 - Breakpoint selection
 - Impose monotonicity and slope constraints
 - Sensitivity to outliers
 - Prone to overfitting
Optimised local control schemes

Support Vector Regression

- Start from OPF-generated set-points (training data)
- Pre-process data (e.g., PV data during night)
- Non-linear SVR
 - Implicit mapping via kernels (Linear, Polynomial, Gaussian)
 - 5-fold cross-validation
 - Impose monotonicity and slope constraints
Optimised local control schemes

Unique characteristic curve per DER

- Implementation challenges
 - Need to program a different curve for each agent
 - Large number of inverter-based DERs
Optimised local control schemes

Unique characteristic curve per DER

- Implementation challenges
 - Need to program a different curve for each agent
 - Large number of inverter-based DERs

Clustering of the curves

- For each voltage value, use k-means algorithm to the n individual curves (use the centroids of the n_{cl} clusters to form the final clustered curves)
- Assign DERs to clustered curves based on “distance”
Methodology overview

Operational planning problem with OPF-based centralised control

Optimal DER set-point data

Data pre-processing

Derivation of optimised local control schemes

Clustering

Validation

Stage II
Methodology overview

Operational planning problem with OPF-based centralised control

Optimal DER set-point data

Data pre-processing

Derivation of optimised local control schemes

Clustering

Validation

Stage III
Control actions

- Active Power Curtailment (APC)
- Reactive Power Control (RPC)
- Battery Energy Storage System (BESS)
- Controllable load (CL)

Network description

- Based on European CIGRE LV grid
- Normalized profiles
 - PV & forecasts: Real data from Zurich
 - Load: Typical profiles based on CIGRE
- Summer day simulations
 - High solar radiation
- Acceptable limits:
 - Voltage: ± 4% p.u.
 - Current: up to 1 p.u.
Some results

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Voltage (p.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td></td>
</tr>
<tr>
<td>216</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
</tr>
</tbody>
</table>

- Orig.
- \(V_{max} \)
Some results

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Voltage (p.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>0.95</td>
</tr>
<tr>
<td>48</td>
<td>1.05</td>
</tr>
<tr>
<td>72</td>
<td>1.05</td>
</tr>
<tr>
<td>96</td>
<td>1.10</td>
</tr>
<tr>
<td>120</td>
<td>1.10</td>
</tr>
<tr>
<td>144</td>
<td>1.10</td>
</tr>
<tr>
<td>168</td>
<td>1.10</td>
</tr>
<tr>
<td>192</td>
<td>1.10</td>
</tr>
<tr>
<td>216</td>
<td>1.10</td>
</tr>
<tr>
<td>240</td>
<td>1.10</td>
</tr>
</tbody>
</table>

- Orig.
- OPF
- V_{max}

The graph shows the voltage profile over time, with "Orig." and "OPF" indicating the original and optimal power flow, respectively.
Some results

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Orig.</th>
<th>VDE</th>
<th>V_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltage (p.u.)

- **Orig.**
- **VDE**
- V_{max}
Some results

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Voltage (p.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Orig.</td>
</tr>
<tr>
<td>48</td>
<td>VDE</td>
</tr>
<tr>
<td>72</td>
<td>OLC</td>
</tr>
<tr>
<td>96</td>
<td>OLC-C</td>
</tr>
<tr>
<td>120</td>
<td>V_{max}</td>
</tr>
</tbody>
</table>

The diagram shows the voltage over time for different scenarios, including the original (Orig.), VDE, OLC, and OLC-C methods, with the maximum voltage level marked as V_{max}. The voltage values are indicated at specific time intervals.
Some results

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Voltage (p.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>1.05</td>
</tr>
<tr>
<td>48</td>
<td>1.10</td>
</tr>
<tr>
<td>72</td>
<td>1.05</td>
</tr>
<tr>
<td>96</td>
<td>1.10</td>
</tr>
<tr>
<td>120</td>
<td>1.05</td>
</tr>
<tr>
<td>144</td>
<td>1.10</td>
</tr>
<tr>
<td>168</td>
<td>1.05</td>
</tr>
<tr>
<td>192</td>
<td>1.10</td>
</tr>
<tr>
<td>216</td>
<td>1.05</td>
</tr>
<tr>
<td>240</td>
<td>1.10</td>
</tr>
</tbody>
</table>

Legend:
- Orig.
- VDE
- OLC
- OLC-C
- V_{max}
Concluding remarks
Concluding remarks

• Most of the new Smart Grid-driven developments are located in distribution grids
• Lack monitoring, communication, and control infrastructure
Concluding remarks

- Most of the new *Smart Grid-driven* developments are located in distribution grids
- Lack *monitoring*, *communication*, and *control* infrastructure
- **Centralised** controllers have great performance but high cost and robustness concerns
- **Local** controllers are robust and low cost but cannot cope with modern challenges

Future steps

- Investigate different ML techniques and extend to multiple local features
- Experimental validation (EMP A, Zurich)
Concluding remarks

• Most of the new Smart Grid-driven developments are located in distribution grids
• Lack monitoring, communication, and control infrastructure
• Centralised controllers have great performance but high cost and robustness concerns
• Local controllers are robust and low cost but cannot cope with modern challenges

Data-driven optimised local controllers can bridge the gap
Concluding remarks

- Most of the new Smart Grid-driven developments are located in distribution grids
- Lack monitoring, communication, and control infrastructure
- Centralised controllers have great performance but high cost and robustness concerns
- Local controllers are robust and low cost but cannot cope with modern challenges

Data-driven optimised local controllers can bridge the gap

Future steps

- Investigate different ML techniques and extend to multiple local “features”
- Experimental validation (EMPA, Zurich)
Questions?