Modelling and quantification of uncertainties in power systems: Probabilistic analysis using PowerFactory

Dr. Johannes Rueß

DIgSILENT GmbH

April 20, 2018

Dr. Johannes Rueß (DIgSILENT GmbH)

Modelling and quantification of uncertainties

April 20, 2018 1 / 11

・ロト ・回ト ・ヨト ・

Uncertainties in power systems

weather

renewables

consumption

contingencies

Dr. Johannes Rueß (DIgSILENT GmbH)

イロト イヨト イヨト イヨト

Uncertainties Calculation Probability distributions

weather power grid distribution

イロン イロン イヨン イヨン

Problem definition

 $X: \ \Omega o \mathbb{R}^s$: Random input defined on some probability space Ω

 $f: \mathbb{R}^s \to \mathbb{R}^d$: Function to be studied probabilistically

f(X): Observed random quantities

Goal: Determine the distributon of f(X).

Major challenges

- Precision
- Performance
- Generic modelling

Calculation methods

Non-intrusive

- Monte Carlo method
- Quasi-Monte Carlo method
- Point estimate

Intrusive

- Cumulants
- Convolutions
- Stochastic Galerkin

Overview of calculation methods

Cumulants

- Approximation of distribution functions using series expansion, similar to Taylor
- Linearization at the operating point
- Result: Moments

Convolution method

- Support of discrete variables difficult
- Linearization at the operating point
- Problematic: Momory consumption / performance / resolution
- Independent random input variables required

Point estimate

- Requires many executions of analysed calculation
- Independent random input variables required
- Result: Moments

イロト イポト イヨト イヨ

The (Quasi-) Monte Carlo method

Given a sequence $(X_n)_n$ of samples of the random input X.

Estimation of the expectation of some function f:

$$\frac{1}{N}\sum_{n=1}^{N}f(X_n)\to E[f(X)] \text{ as } N\to\infty. \tag{1}$$

Questions

- Convergence
- Rate of convergence

Answer depends on ...

- Type of the sequence of samples
- Properties of f (continuous, ...)
- Dimensionality of the problem

イロト イヨト イヨト イヨト

 $(X_n)_n$ identically and independently distributed (i.i.d) samples from X.

Convergence rate:

$$O(1/\sqrt{N}).$$
 (2)

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Pro:

- Convergence rate is independent of input dimension
- May be applied to ,any' integrable function f
- Convergence with probability 1

Con:

- Relatively slow convergence
- We do not know the constants (depend on the realization)

Quasi-Monte Carlo method

 $(X_n)_n$ specific 'space exploring' sequence.

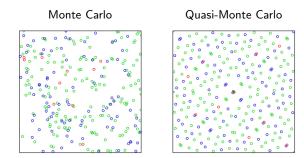
Convergence rate:

```
O((\log N)^s/N),
```

where s is the number of random inputs.

Pro:

• Convergence rate is relatively fast.


Con:

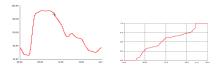
- Rate of convergence depends on input dimension.
- Valid for uniform distributions on the unit cube [0,1]^s. Therefore, transform of distributions is required.
- Requires some assumptions on f.

Note:

- Still topic of research.
- Dependence on input dimension $log(N)^s$ is worst case scenario.
- Usually not much dependence on input dimension observed.

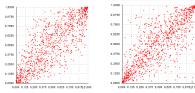
(3)

Source: Wikipedia


Dr. Johannes Rueß (DIgSILENT GmbH)

3

Modelling randomness


Distributions

- Predefined distributions
- Estimated distributions based on measurement data

Dependencies

- Predefined copulae
- Estimated copulae based on measurement data

Dr. Johannes Rueß (DIgSILENT GmbH)

Modelling and quantification of uncertainties

Thank you for your attention ...

・ロト ・ 日 ・ ・ モ ・ ・ モ ・

< ≣ ► ≣ ∽ < <> April 20, 2018 11 / 11