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Uncertainties in power systems

weather renewables

consumption contingencies
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Probabilistic Analysis

Uncertainties Calculation Probability distributions

weather power grid distribution
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Probabilistic Analysis

Problem definition

X : Ω → Rs : Random input defined on some probability space Ω
f : Rs → Rd : Function to be studied probabilistically
f (X ): Observed random quantities

Goal: Determine the distributon of f (X ).

Major challenges

Precision
Performance
Generic modelling

Calculation methods

Non-intrusive Intrusive

Monte Carlo method
Quasi-Monte Carlo method
Point estimate

Cumulants
Convolutions
Stochastic Galerkin
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Overview of calculation methods

Cumulants

Approximation of distribution functions using series expansion, similar to Taylor
Linearization at the operating point
Result: Moments

Convolution method

Support of discrete variables difficult
Linearization at the operating point
Problematic: Momory consumption / performance / resolution
Independent random input variables required

Point estimate

Requires many executions of analysed calculation
Independent random input variables required
Result: Moments
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The (Quasi-) Monte Carlo method

Given a sequence (Xn)n of samples of the random input X .

Estimation of the expectation of some function f :

1

N

N∑
n=1

f (Xn) → E [f (X )] as N → ∞. (1)

Questions

Convergence
Rate of convergence

Answer depends on ...

Type of the sequence of samples
Properties of f (continuous, ...)
Dimensionality of the problem
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Monte Carlo method

(Xn)n identically and independently distributed (i.i.d) samples from X .

Convergence rate:

O(1/
√
N). (2)

Pro:

Convergence rate is independent of input dimension
May be applied to ,any’ integrable function f
Convergence with probability 1

Con:

Relatively slow convergence
We do not know the constants (depend on the realization)
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Quasi-Monte Carlo method

(Xn)n specific ’space exploring’ sequence.

Convergence rate:

O((logN)s/N), (3)

where s is the number of random inputs.

Pro:

Convergence rate is relatively fast.

Con:

Rate of convergence depends on input dimension.
Valid for uniform distributions on the unit cube [0, 1]s .
Therefore, transform of distributions is required.
Requires some assumptions on f .

Note:

Still topic of research.
Dependence on input dimension log(N)s is worst case scenario.
Usually not much dependence on input dimension observed.
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Monte Carlo Quasi-Monte Carlo

Source: Wikipedia
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Modelling randomness

Distributions

Predefined distributions
Estimated distributions based on measurement data

Dependencies

Predefined copulae
Estimated copulae based on measurement data
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Thank you for your attention ...
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